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Abstraet--Newtonian flow past a sphere in a tube of finite radius was investigated experimentally acd 
numerically. The flow visualization technique using He-Ne laser as a light source has been employed to study 
the vortex characteristics occurring on the backside of the sptJere which is set stationaLy inside the tube mov- 
ing vertically. It has been revealed that the vortex size decreases as the ratio of sphere to tube diameter (a) in- 
creases. Galerkin finite element simulation was able to predict those phenomena almost exactly and also us- 
ed to calculate the drag coefficients which vary with the Reynolds number and a. 

I N T R O D U C T I O N  

The uniform flow past submerged spherical objects 
is one of the flow situations commonly encountered in 
many industrial processes. For Newtonian fluids pre- 
vious works were mostly made on the one in the infi- 
nite fluid medium without the wall effect. Taneda[1 ], 
Adachi et al.[2] and Brauer[3] performed the flow 
visualization experiments in a horizontal tank with di- 
mensions 50 x 50 x 200cm. Photographs were taken 
with a camera which was connected with a sphere and 
moved at the same speed as the sphere. Vortices de- 
pending on the Reynolds number(Re) occurred on the 
backside of the sphere; i.e., stationary ring vortices for 
20 < Re < 130 and u nsteady vortices for Re > 130 Here, 
the Reynolds number(Re) is defined as pDVI# where 
p.D,V and #represent  the density of the fluid, the 
diameter of the sphere, the relative velocity of the 
sphere to the fluid medium and the viscosity of the 

fluid, respectively. 
Numerical solutions have also been obtained by 

many authors, including Adachi et al.[2], Brauer{3], 
Jenson[41, Hamielec et al.[5] and Kwon[6]. 

In this study the flow past a sphere in a tube of fi- 
nite radius is investigated experimentally and numeri- 
cally for Newtonian fluids. Main concerns are centered 
on the vortex characteristics and the drag coefficients 
affected by the presence of the tube wall. 

E X P E R I M E N T S  

The flow visualization experiments have been car- 
ried out to obtain the steady streamlines in the flow 

past a sphere in a tube. General view of the apparatus 
is shown in Fig. 1. The unique feature of this apparatus 
is that the tube containing the whole fluid medium is 
moving vertically, while the sphere is stationary. Note 
that in most of previous experimental works the sp- 
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Fig. I, Exper imenta l  apparatus  u s e d  for the visuali-  
zat ion of the  f low past  a s p h e r e  in a tube.  
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here is falling down through the stationary fluid me- 
dium. The sphere was set stationary by a thin wire str- 
ing with diameter of 0.6 ram. It will be discussed later 
that the effect of this thin wire string becomes negli- 
gible. The sphere used in the experiments is made of 
steel and its diameter was 2.3 cm. The L~bes of two dif- 
ferent diameters, 3.1 cm and 4.6 cm, v, ere used to in- 
vestigate the effect of the wall proximity. 

The visualization is to illuminate a thin meridian 
section of the tube after fine bright particles have been 
suspended uniformly in the fluid, and to photograph 
the paths of these particles when the tube with length 
of 90 cm moves downwards. To get steady tube veloci- 
ty DC motor with variable speed was used. The :ube 
velocity ranged from 0.5 to 7 cm/scc, In order to com- 
pensate the diopter effect, the tube was set in the axis 
of a square acryl-box full of the same fu id  as the test 
fuid. Light from a 10 mW He-Ne laser(NEC Model 
GLO5340) was spread into a narrow sheet of light by 
means of a cylindrical lens. This sheet of light was 
collimated by a slit. A camera to which a close-up ring 
was attached was used to take photographs. Panato- 
mic-X film (black and white, ASA32) was used ancl ex- 
Fosure time ranged from 5 to 30 seconds. 

NUMERICAL SIMULATIONS 

The finite element analysis of the flow past a sp- 
here in a tube has been carried out to investigate the 
vortex characteristics observed experimentally and the 
drag coefficients have been calculated to figure out the 
effect of the tube wall. 
I. G o v e r n i n g  E q u a t i o n s  

Let U(r,z) and V(r,z) denote the radial and axial 
velocity components in the steady axisymmetric flow, 
expressed in polar cylindrical (r,z) coordinates. Then, 
the continuity equation is 

U,,-- U/r  - \ ' % =  0 {1) 

and the momentum equations are 

p ~UU.,- ~ VU.~) - - P ~ -  T,-,-.,- + T ..... 

+ iT,~- ' I ' , , , , ) / r  ~ F~ (2a) 

,o cUV. r - VV.~ - P.~, T .. . .  ~ T,-z/r 

where T,,, T=, T,,,, and 'I'= are the extra-stress com- 
ponents, P is modified pressure which includes the 
gravity term, E,  F~ are the components of the body 
force per unit volume, and a comma followed by sub- 
script r or z denotes partial differentiation with respe:t to 
the corresponding variables. 

2. G a l e r k i n  F in i te  E l e m e n t  F o r m u l a t i o n  
Let us consider a domain ~ in the r,z sectional 

plane bounded by a closed curve F. And let us cover 

the domain ,O by a mesh of finite elements, and ap- 
proximate the unknown velocity components and 
pressure as follows 

r - r , r  i~'. 771 (3a) 

z =z~r (~', ~! (3b) 

[ i ! r  z; U , r  z', (4a) 

\-' :r. z) V~r !r. zl (4b) 

Pir, z! - P ,  g ir, z! (4c) 

where ~j' s are the quadractic or biquadratic shape fun- 
ctions and r  are the linear or bilinear shape fun- 
ctions. 

By performing the scalar product of Eqs.(2} with r@, 
and using the divergence theorem, one finds easily the 
Galerkin form of the equations of motion. 

< r  ~,..; - P  4 T ~ . >  -- < r  r T . ~ >  + < ,k~: T ~ >  

- < ~ , ;  P >  + p<rr  UU,~ ~ V U , ~ >  ~ < r  ~ ;  F ~ >  

- < r r  (5a) 

<r~, . , ;  T,-~> ; '<rcA.~; - P  F T ~ >  

�9 p < r ~ ;  U V , ~ -  V V , ~ > -  < r ~ ;  F ~ >  

+. <<r~;  t,>> (5b) 

where tr, tz are the r and z components of the contact 
force vector, the notation < ; > means the integration 
over the domain and << ; ~. means the integration 
along the boundary surface. We now express the extra- 
stress components in terms of the velocity components 
to obtain the final form of Galerkin equations. 

< r  ~.~: - P  ~ 2 ~ U . , >  # < r  ~,.~; ,~(U.~- V.~) > 

- <r  2 /z [ J / r>  - <~, ;  P > +  p < r  r UU,, 

4 V U . ~ > -  < r ~ , ; F ~ > 4 - < < r ~ ; t ~ >  (6a) 

< r  r ~ (U,r # V,r) > + < r  ~'l,~; - P-i-2/~V,z> 

--.p< r r UV, .+  V V . . >  = < r e , ;  F . >  

..... < r  O,; t~>> (6b) 

The Galerkin form of the conservation of mass beco- 
mes 

<rr U.,-* U/r-§ V,.~> = 0 (7) 

We finally obtain the system of equations by substi- 
tuting the Eqs.(4) into the Eqs.(6) and (7). 

(A,, U, +C,,V,) +p (I R,,,r U,,+IZ,, , ,V, U,,) 

- D,, P, R, (8a) 

~C,,U, +-B~. Vj ) -4-p (IR,~U,V,,+IZ,,J, V,,) 

- E . P , = Z ,  (8b) 

~ D,,U, - E, ,V,  ) = 0 (8c) 

where 

Ao 2</1i  r r 4 <,arr r 
4 2 <.ur C j / r >  (9a) 
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B~ < r  ~b,,~> - 2 < ~ r q , ~ ;  ~b,,~> (9b) 

C~= < ~ r  ~ ;  ~,,~> (9c) 

E ~ -  < r  ~ ;  ~ >  (9e) 

IR~j~ <r@~;@~k,~> (10al 

I Z , ~ =  < r  ~,; ~ ~ , ~ >  (10 b) 

R , -  <r@~; F , >  + << r @~; t~>> ( l l a )  

Z~-  < r ~ ; F ~ >  + <<r~;t~>> ( l ib )  

The coefficients A,j, Bij, CO., D0, Er [R~jk, IZ0. ~ and the 
right hand sides Ri, Zi in Eqs.(8)-(l 1) can be obtained 
by numerical integrations using Gaussian quadrature. 
3. M e s h e s  a n d  B o u n d a r y  C o n d i t i o n s  

The typical mesh and boundary conditions for sol- 
v?ng the system of Eqs.(8) are shown in Fig. 2. The no- 
slip conditions are applied along the solid wall and the 
radial velocity(U) and the axial force component(tz) 
vanish along the axis of symmetry. The uniform flat 
velocity profiles are imposed in the entry and exit sec- 
tions. The calculations to figure out the effect of thin 
wire string were also carried out by imposing corres- 

U=O 
V=-I 

(0,]~ .LI5) 

U = :  , 

t z  == 

(0,-12 

a =0,5 
No. of elements : 152 
No. of nodes : 689 
No. of variables : 1574 

t-6 
~=-I 

2,-120) 

U=0 
V=-I  

Fig. 2. Finite element meshes  and boundary condi- 
tions used when a = 0.5. 

ponding geometries and no-slip conditions on the wire 
surface. 
4. Other  N u m e r i c a l  S t r a t e g i e s  

Eqs.(8) form a nonlinear system which must be sol- 
ved by iterative techniques. Newton-Raphson method 
was used to deal with the nonlinearity and the frontal 
elimination method[7] was used to reduce the size of 
stiffness matrix. Convergence of the Newton-Raphson 
algorithm was remarkably fast. Three or four iterations 
usually suffice for reaching a relative error of 10 -4. The 
solutions at lower Reynolds numbers have been used 
as initial guesses for the calculations at higher Rey- 
nolds numbers. 

RESULTS AND DISCUSSION 

The effect of the thin wire string which is used to 
fix the sphere has been first investigated numerically. 
Fig. 3 shows typical streamlines in the cases with and 
without wire string. One can easily see that the effect 
of wire string is negligible as far as the streamlines are 
concerned. Therefore, in the rest of this paper we pre- 
sent the numerical results without wire string which 
are compared to the experimental results with the str- 
ing. 

Figs. 4 and 5 show the experimental photographs of 
the streamlines at various Reynolds numbers for a=  
0.5 and 0.74. The dark region is the shadow of the 'sp- 
here and this shadow could be removed if two laser 
beams were employed. The dimensionless vortex 

I 
(a) (b) 

Fig. 3. The streamlines obtained numerically in Ihe 
cases (a) with wire string and Co) without wire 
string for a = 0.5 and Re = I00. 
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Fiig. 4. E x p e r i m e n t a l  photographs  of the s t reaml ines  for a = 0.5. 

wake(S/R) defined by the ratio of the vortex length to 
tl-le sphere radius is plot:ed against Re in Fig. 6, in 
which S/R obtained numerically is also shown. [t is 
easily found that the dimensionless vortex wake(S/R) 
increases as Re increases and it decreases a.s a increa- 
ses. And the Reynolds number at which the vortex be- 
gins to appear increases as a increases and the Rey- 
nolds number at which the vortex begin~ to become 
unstable also increases as a increases. In Fig. 7 lhe 
numerical results are compared to the experimental 
observations with good agreements. 

Next, let us consider the drag coefficient for this 
system. Once the velocity field is known, the system of 
Eqs.(8) allows us to calculate the nodal forces on the 
surface. The sum of the nodal forces in the z-direction 

\ 

'F  ~ 

multiplied by 2.,r gives the drag force(F).Then the drag 
coefficient CD is defined as 

C,, F 
l /2pVTA 

where A is the area of the projection of the body on a 
plane normal to the stream at infinity. In Fig. 8 the 
drag coefficients calculated numerically are plotted 
against Re for a =0.5 and 0.74. The previous results of 
Lapple and Shepherd[8] in infinite fluid medium 
(a= 0) are also shown in Fig. 8. [t is seen that the wall 
proximity increases the drag force on the sphere. 

The experimental measurements of the drag force 
and the studies for the viscoelastic fluid medium are 
under way. 
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Fig. 5. Experimental photographs of the streamlines for u = 0.74. 

CONCLUSIONS 

The flow past a sphere in a tube of finite radius was 
investigated experimentally and numerically for New- 
tonian f!uids. The streamlines photographed by the 
flow visualization experiments and those obtained by 

the finite elements simulations show good agl~ee- 
merits. The size of the vortex occurring on the back- 
side of the sphere increases as Re increases and it de- 
creases as the ratio of sphere to tube diameter(u) in- 
creases. The drag coefficient calculated numerically in- 
creases as a increases. 
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Fig. 6. The dimensionless  vortex wake(S/R) vs. Re at 
various a. 

Fig. 7. Comparison of the streamlines observed 
experimentally and those obtained by finite 
element simulations at Re = I00. 
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Fig. 8. The drag coefficients vs. Re at various a. 
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NOMENCLATURE 

A~ 
B,j 
CD 
C,/ 
D 
D,j 
Ee 
F 
Fr 

Fz 

i,j 
P 

Re 
Ri 

S/R 
T,/ 

tr 
tz 
U 
U/ 
V 

V) 
Zi 

coefficient matrix 
coefficient matrix 
drag coefficient for flow past a sphere 
coefficient matrix 
sphere diameter 
coefficient matrix 
coefficient matrix 
total drag force 
r-component of the body force per unit 
volume 
z-component of the body force per unit 
volume 
node indices 
pressure 
pressure value at node j 
Reynolds number 
r-component of right-hand side in Eqn. 
(8a) 
radial coordinate in polar cylindrical co- 
ordinates 
dimensionless vortex wake length 
extra-stress component 

r-component of the contact force vector 
z-component of the contact force vector 
radial velocity component 
radial velocity at node j 
axial velocity component 
(downward cylinder velocity) 
axial velocity at node j 
z-component of right-hand side in Eqn. 
(8b) 

G r e e k  Letters  
Of 
F 
/J 
p 

: ratio of sphere to cylinder diameter 
boundary 
shear viscosity 
density 
first-order Lagrangian shape functions 
second-order Lagrangian shape functions 
domain 

O t h e r  S y m b o l s  
< ; > : integration over domain ~Q 
<~; )~ : integration along boundary line F 

Korean J. Ch. E. Orol. 5, No. 2) 
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( ),x : partial differentiation with respect to the 
corresponding variable x 
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